首页 | 本学科首页   官方微博 | 高级检索  
     

基于极限学习机的无监督领域适应分类器
作者姓名:王雪松  赵季娟  程玉虎  许德智
作者单位:中国矿业大学信息与控制工程学院,江苏徐州,221116
基金项目:国家自然科学基金项目(61772532).
摘    要:在构建基于极限学习机的无监督自适应分类器时, 隐含层的参数通常都是随机选取的, 而随机选取的参数不具备领域适应能力. 为了增强跨领域极限学习机的知识迁移能力,提出一种新的基于极限学习机的无监督领域适应分类器学习方法, 该方法主要利用自编码极限学习机对源域和目标域数据进行重构学习, 从而可以获得具有领域不变特性的隐含层参数. 进一步, 结合联合概率分布匹配和流形正则的思想, 对输出层权重进行自适应调整. 所提出算法能对极限学习机的两层参数均赋予领域适应能力,在字符数据集和对象识别数据集上的实验结果表明其具有较高的跨领域分类精度.

关 键 词:领域适应  极限学习机  无监督  分类器
本文献已被 万方数据 等数据库收录!
点击此处可从《控制与决策》浏览原始摘要信息
点击此处可从《控制与决策》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号