Abstract: | In this paper, we propose and present implementation results of a high‐speed turbo decoding algorithm. The latency caused by (de)interleaving and iterative decoding in a conventional maximum a posteriori turbo decoder can be dramatically reduced with the proposed design. The source of the latency reduction is from the combination of the radix‐4, center to top, parallel decoding, and early‐stop algorithms. This reduced latency enables the use of the turbo decoder as a forward error correction scheme in real‐time wireless communication services. The proposed scheme results in a slight degradation in bit error rate performance for large block sizes because the effective interleaver size in a radix‐4 implementation is reduced to half, relative to the conventional method. To prove the latency reduction, we implemented the proposed scheme on a field‐programmable gate array and compared its decoding speed with that of a conventional decoder. The results show an improvement of at least five fold for a single iteration of turbo decoding. |