Re-solution effects and fission gas swelling in UO2 |
| |
Authors: | C.C. DollinsH. Ocken |
| |
Affiliation: | Bettis Atomic Power Laboratory, Pittsburgh, Pennsylvania, USA |
| |
Abstract: | A fission gas swelling model is proposed which enables one to calculate swelling in the vicinity of grain boundary networks and in imperfection-free regions. The grain boundary swelling requires a knowledge of the gas accumulation and the reaction-rate at the boundary. The gas accumulation was calculated by deriving a modified form of Fick's second law wherein it was assumed that because of re-solution effects the in-pile diffusion coefficient can be described as a function of the gas concentration but is independent of the actual operating time. Reaction-rates for bubbles at grain boundaries were derived in the manner discussed by de Jong and Koehler in their treatment of vacancy clustering. The results indicate that there is a grain size of about 10−4 cm for which the swelling is a maximum, which increases somewhat with irradiation temperature and with depletion at a constant temperature. The results enable one to predict the swelling and the mean radii of both intergranular and intragranular bubbles. Mean bubble radii predicted using the re-solution swelling model are in reasonable agreement with radii obtained from electron micrographs of irradiated UO2 fuel samples. It is argued that gas bubble migration is the predominant means by which gas atoms arrive at grain boundaries at irradiation temperatures above about 900°C. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|