首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进遗传算法的多目标无功优化
引用本文:张武军,叶剑锋,梁伟杰,方鸽飞. 基于改进遗传算法的多目标无功优化[J]. 电网技术, 2004, 28(11): 67-71
作者姓名:张武军  叶剑锋  梁伟杰  方鸽飞
作者单位:浙江大学电气工程学院,浙江省,杭州市,310027;浙江大学电气工程学院,浙江省,杭州市,310027;浙江大学电气工程学院,浙江省,杭州市,310027;浙江大学电气工程学院,浙江省,杭州市,310027
摘    要:阐述了用于无功优化的改进遗传算法,在已有改进简单遗传算法的基础上,提出在含有多个目标的目标函数中采用线性变化和指数变化规律的越界罚系数,并对适应度函数进行模拟退火修正以保持种群的多样性和加快收敛;采用遗传因子自适应变化和改进的变异操作,可使遗传算法的全局优化和局部寻优能力大为提高.IEEE14节点系统的仿真计算结果表明,该方法在计算速度和收敛能力上优于简单遗传算法,且罚系数采用指数规律变化比采用定值或线性变化规律时收敛能力有明显改善.

关 键 词:电力系统  无功优化  遗传算法  电压稳定性  罚系数
文章编号:1000-3673(2004)11-0067-05
修稿时间:2003-09-08

MULTIPLE-OBJECTIVE REACTIVE POWER OPTIMIZATION BASED ON IMPROVED GENETIC ALGORITHM
ZHANG Wu-jun,YE Jian-feng,LIANG Wei-jie,FANG Ge-fei School of Electrical Engineerng,Zhejiang University,Hangzhou ,Zhejiang Province,China. MULTIPLE-OBJECTIVE REACTIVE POWER OPTIMIZATION BASED ON IMPROVED GENETIC ALGORITHM[J]. Power System Technology, 2004, 28(11): 67-71
Authors:ZHANG Wu-jun  YE Jian-feng  LIANG Wei-jie  FANG Ge-fei School of Electrical Engineerng  Zhejiang University  Hangzhou   Zhejiang Province  China
Affiliation:ZHANG Wu-jun,YE Jian-feng,LIANG Wei-jie,FANG Ge-fei School of Electrical Engineerng,Zhejiang University,Hangzhou 310027,Zhejiang Province,China
Abstract:A modified genetic algorithm for reactive poweroptimization is presented. On the basis of the existingimproved genetic algorithm, it is pointed out that to ensure thepopulation diversity and to speed up the convergence thepenalty coefficient with linear and exponential variation laws isapplied to the objective function containing multi-objects, andthe sufficiency function is modified by simulated annealing.Using the adaptive variance of the genetic factor and theimproved variation operation, the global and partialoptimization ability can be obviously improved. The results ofcalculation and simulation for IEEE 14-bus system show that inthe aspects of calculation speed and convergence ability thepresented method is better than simple genetic algorithm, andthe convergence speed will be faster when the penaltycoefficient varies by exponential law rather than the constant orlinear variation law.
Keywords:Power system  Reactive power optimization  Genetic algorithm  Voltage stability  Penalty coefficient
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号