Associative Reinforcement Learning: A Generate and Test Algorithm |
| |
Authors: | Kaelbling Leslie Pack |
| |
Affiliation: | (1) Computer Science Department, Brown University, Box 1910, 02912-1910 Providence, RI, USA |
| |
Abstract: | ![]() An agent that must learn to act in the world by trial and error faces thereinforcement learning problem, which is quite different from standard concept learning. Although good algorithms exist for this problem in the general case, they are often quite inefficient and do not exhibit generalization. One strategy is to find restricted classes of action policies that can be learned more efficiently. This paper pursues that strategy by developing an algorithm that performans an on-line search through the space of action mappings, expressed as Boolean formulae. The algorithm is compared with existing methods in empirical trials and is shown to have very good performance. |
| |
Keywords: | reinforcement learning generalization generate-and-test |
本文献已被 SpringerLink 等数据库收录! |
|