首页 | 本学科首页   官方微博 | 高级检索  
     

真空烧结制备316L不锈钢纤维/HA复合生物材料及其理化性能
引用本文:邹俭鹏,阮建明,黄伯云,周忠诚,申雄军,周智华.真空烧结制备316L不锈钢纤维/HA复合生物材料及其理化性能[J].复合材料学报,2005,22(5):39-46.
作者姓名:邹俭鹏  阮建明  黄伯云  周忠诚  申雄军  周智华
作者单位:中南大学 粉末冶金国家重点实验室, 长沙 410083
基金项目:国家自然科学基金资助项目(50174059)
摘    要:用真空烧结成功制备了不同成分316L不锈钢纤维/HA复合生物材料和316L不锈钢纤维/HA-ZrO2 (CaO) 复合生物材料,并通过金相显微镜、SEM、EDXA分析了材料的微观结构、断裂性能和微区元素含量。结果表明:不锈钢纤维和纳米ZrO2 (CaO) 粒子对复合材料具有增强和增韧的作用。综合考虑认为,20% 316L不锈钢纤维/HA-ZrO2 (CaO) 复合材料的性能最优,其抗弯强度和抗压强度分别为140.1MPa和348.9MPa。316L不锈钢纤维/HA-ZrO2 (CaO) 复合材料抗弯强度随316L 不锈钢纤维直径和长度减小而增大,且纤维长度对抗弯强度的影响略大于纤维直径的影响。复合材料微观组织随HA粉末和316L不锈钢纤维成分变化呈规律性变化,没有出现明显的裂纹或孔隙,HA和316L不锈钢纤维结合紧密,界面平整,两相融合程度较高。5% 316L不锈钢纤维复合材料表现为脆性断裂,而10%、20%、40% 316L不锈钢纤维复合材料均表现为韧性断裂,且韧性程度随316L不锈钢纤维含量依次增加。基体与韧化相均相对独立,二者之间不发生任何化学反应,基体HA中发生微量的Fe元素扩散,但在316L不锈钢中不发生基体的扩散。 

关 键 词:真空烧结    316L不锈钢纤维    生物材料    微观结构    理化性能
文章编号:1000-3851(2005)05-0039-08
收稿时间:10 26 2004 12:00AM
修稿时间:2004-10-262004-12-13

VACUUM SINTERING FABRICATION AND PHYSICO-CHEMICAL PROPERTIES OF 316L STAINLESS STEEL FIBRE/HA COMPOSITE BIOMATERIALS
ZOU Jianpeng,RUAN Jianming,HUANG Baiyun,ZHOU Zhongcheng,SHEN Xiongjun,ZHOU Zhihua.VACUUM SINTERING FABRICATION AND PHYSICO-CHEMICAL PROPERTIES OF 316L STAINLESS STEEL FIBRE/HA COMPOSITE BIOMATERIALS[J].Acta Materiae Compositae Sinica,2005,22(5):39-46.
Authors:ZOU Jianpeng  RUAN Jianming  HUANG Baiyun  ZHOU Zhongcheng  SHEN Xiongjun  ZHOU Zhihua
Affiliation:State Key Laboratory for Powder Metallurgy, Central South University,Changsha 410083, China
Abstract:Different components of 316L stainless steel(316L SS)fibre/HA biomaterials and 316L SS fibre/HA-ZrO2 (CaO )biomaterials were fabricated with vacuum sintering. Metallographical microscope, SEM and EDXA analysis were carried out to investigate the microstructure, fracture property and microfield element contents of the composites. The results show that 316L SS fibres and nano-sized ZrO2 (CaO )have reinforcing and toughening effects on the composites. Comprehensive consideration suggests that 316L SS fibre/HA-ZrO2 (CaO) biomaterials with 20% 316L SS fibre have optimal mechanical properties with bending strength and compressive strength of 140.1MPa and 348.9MPa. Bending strength increases with decreasing diameter or length of the 316L SS fibres. Microstructure of the composites changes regularly with the ratio between HA and 316L SS fibre. No obvious flaws or pores appear in the composites and 316L SS fibre is enwrapped in the HA (ZrO2 )matrix with tight integration. Brittle fracture appears in 5% 316L SS fibre/HA-ZrO2 (CaO )biomaterials and tough fracture appears in 10%, 20%, 40% 316L SS fibre/HA-ZrO2 (CaO )biomaterials. And the toughness increases with the rise of 316L SS fibre contents in 316L SS fibre/HA-ZrO2 (CaO) biomaterials with 10%, 20%, 40% 316L SS fibres. Some Fe element diffusion of the toughened phase takes place in the HA (ZrO2 )matrix and no Ca, P element diffusion in 316L SS fibre. Both matrix and toughened phase are relatively independent and no chemical reaction is observed in the composites.
Keywords:vacuum sintering  316L stainless steel fibre  biomaterials  microstructure  physico-chemical properties
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《复合材料学报》浏览原始摘要信息
点击此处可从《复合材料学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号