首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of matrix on the dry friction coefficient of unidirectional fiber-reinforced composite
Authors:V. I. Vettegren  A. V. Savitskii  A. I. Lyashkov  R. I. Mamalimov
Affiliation:1. Ioffe Physico-Technical Institute, Russian Academy of Sciences, St. Petersburg, 194021, Russia
Abstract:The coefficients of dry rest (μ0) and sliding (μ s ) friction on a polished disk made of quenched steel have been measured for various polymer matrices and fibers and for a composite unidirectionally reinforced with poly(amidobenzimidazole) (PABI) fibers. It is established that μ0 > μ s for matrices and fibers with glass transition temperatures T g below room temperature T R , otherwise μ0 ≈ μ s . This effect is explained by a sharp growth in the plasticity of polymers at T g , which leads to an increase in the polymer-steel contact area. For a composite with T g > T R , the dry friction coefficients obey the relation μ0 ≈ μ s ≈ μ e /C, where μ e is the coefficients of sliding friction of PABI fibers and C is their concentration. For T g < T R (plastic matrix), the friction coefficients of the composite and matrix are close because the latter cannot hold the fiber ends during friction. As a result, they are bent and aligned along the matrix surface or embedded in the surface layer.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号