首页 | 本学科首页   官方微博 | 高级检索  
     


Construction of hierarchical three-dimensional interspersed flower-like nickel hydroxide for asymmetric supercapacitors
Authors:Wutao Wei  Weihua Chen  Luoyi Ding  Shizhong Cui  Liwei Mi
Affiliation:1. Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, China;2. College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
Abstract:Low-cost and easily obtainable electrode materials are crucial for the application of supercapacitors.Nickel hydroxides have recently attracted intensive attention owning to their high theoretical specific capacitance,high redox activity,low cost,and eco-friendliness.In this study,novel three-dimensional (3D) interspersed flower-like nickel hydroxide was assembled under mild conditions.When ammonia was used as the precipitant and inhibitor and CTAB was used as an exfoliation agent,the obtained exfoliated ultrathin Ni(OH)2 nanosheets were assembled into 3D interspersed flower-like nickel hydroxide.In this novel 3D structure,the ultrathin Ni(OH)2 nanosheets not only provided a large contact area with the electrolyte,reducing the polarization of the electrochemical reaction and providing more active sites,but also reduced the concentration polarization in the electrode solution interface.Consequently,the utilization efficiency of the active material was improved,yielding a high capacitance.The electrochemical performance was improved via promoting the electrical conductivity by mixing the as-synthesized Ni(OH)2 with carbon tubes (N-4-CNT electrode),yielding excellent specific capacitances of 2,225.1 F·g-1 at 0.5 A·g-1 in a three-electrode system and 722.0 F·g-1 at 0.2 A·g-1 in a two-electrode system.The N-4-CNT//active carbon (AC) device exhibited long-term cycling performance (capacitance-retention ratio of 111.4% after 10,000 cycles at 5 A·g-1) and a high specific capacitance of 180.5 F·g-1 with a high energy density of 33.5 W·h·kg-1 and a power density of 2,251.6 W·kg-1.
Keywords:energy storage  hierarchical nanostructures  nickel  ultrathin nanosheets  supercapacitors
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号