首页 | 本学科首页   官方微博 | 高级检索  
     

基于多变量统计过程监控的盾构机故障诊断
引用本文:黄克,赵炯,周奇才,熊肖磊. 基于多变量统计过程监控的盾构机故障诊断[J]. 中国工程机械学报, 2012, 10(2): 222-227
作者姓名:黄克  赵炯  周奇才  熊肖磊
作者单位:同济大学机械与能源工程学院,上海,201804
基金项目:上海申通地铁集团有限公司科研资助项目(09-0984-1000)
摘    要:由于盾构机安装有众多监测仪表,且依靠单变量过程监控和人工诊断方式已经无法满足监测的要求,因此引入多变量统计过程监控方法(MSPM).主元分析(PCA)是应用最广泛的MSPM技术,PCA根据盾构运行监测的过程变量和历史数据建立数学模型,并计算统计监控量T2和平方预测误差δ,以及主元空间和残差空间的控制限,分析过程变量是否发生异常.最后以盾构刀盘驱动系统和螺旋输送液压系统为例说明MSPM的详细应用.

关 键 词:盾构机  多变量统计  过程监控  主元分析  故障诊断

Fault diagnosis on shield machines based on multivariable statistical process monitoring
HUANG Ke , ZHAO Jiong , ZHOU Qi-cai , XIONG Xiao-lei. Fault diagnosis on shield machines based on multivariable statistical process monitoring[J]. Chinese Journal of Construction Machinery, 2012, 10(2): 222-227
Authors:HUANG Ke    ZHAO Jiong    ZHOU Qi-cai    XIONG Xiao-lei
Affiliation:(School of Mechanical Engineering,Tongji University,Shanghai 201804,China)
Abstract:Due that numerous monitoring instruments are equipped on the shield machines,the single-variable process monitoring and manual diagnosis cannot meet the demands.In this study,the multivariable statistical process monitoring(MSPM),amongst which the primary component analysis(PCA) is the most frequently-applied technology,is first introduced.Based on the process variables and historical data of shield operational monitoring from PCA,a mathematical model for abnormal process variable analysis is then established to calculate the statistical monitoring variable,e.g.T2,the squared prediction error(δ) and the control limit between the primary component and residual spaces.Finally,shield cutter-plate driving system and screw conveying hydraulic system are used as examples for the detailed MSPM applications.
Keywords:shield machine  multivariable statistical  process monitoring  primary component analysis  fault diagnosis
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号