首页 | 本学科首页   官方微博 | 高级检索  
     


Rough milling optimisation for parts with sculptured surfaces using genetic algorithms in a Stackelberg game
Authors:A. Krimpenis  G.-C. Vosniakos
Affiliation:(1) School of Mechanical Engineering, Manufacturing Technology Division, National Technical University of Athens, 15780 Zografou, Athens, Greece
Abstract:In rough milling of sculptured surface parts, decisions on process parameters concern feedrate, spindle speed, cutting speed, width of cut, raster pattern angle and number of machining slices of variable thickness. In this paper three rough milling objectives are considered: minimum machining time, maximum removed material and maximum uniformity of the remaining volume at the end of roughing. Owing to the complexity of the modelled problem and the large number of parameters, typical genetic algorithms cannot achieve global optima without defining case-dependent constraints. Therefore, to achieve generality, a hierarchical game similar to a Stackelberg game is implemented in which a typical Genetic Algorithm functions as the leader and micro-Genetic Algorithms as followers. In this game, one of the leader’s parameters is responsible for creating a follower’s population and for triggering the optimisation. After properly weighing the three objectives, the follower performs single-objective optimization in steps and feeds the leader back with the objective values as they appear prior to weighing. Micro-Genetic Algorithm (follower) chromosome consists of the distribution of machining slice thickness, while the typical Genetic Algorithm (leader) consists of the milling parameters. The methodology is tested on sculptured surface parts with different properties, and a representative case is presented here.
Keywords:Rough machining  Genetic algorithms  Microgenetic algorithms  Optimisation
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号