首页 | 本学科首页   官方微博 | 高级检索  
     

基于小波集合的局部放电信息提取算法
引用本文:徐剑,黄成军,金浩,邵震宇. 基于小波集合的局部放电信息提取算法[J]. 电力系统自动化, 2004, 28(16): 36-40
作者姓名:徐剑  黄成军  金浩  邵震宇
作者单位:上海交通大学电子信息与电气工程学院,上海市,200030;上海维赛特网络系统有限公司,上海市,201206
基金项目:中华电力教育基金会许继奖教金资助项目。
摘    要:
对于已知波形特征的局部放电信号,选取最优母小波进行多分辨分析,经阂值处理后可以从强干扰中成功地检取出局部放电信息。但对于机理复杂、类型繁多的局部放电而言,单一的最优小波分析显然是较为局限的。文中提出了基于小波集合的局部放电信息提取算法,利用各小波在时、频域的不同特性,在较强的窄带和白噪声干扰条件下,能够更完整地提取多种形态的局部放电波形信息,在仿真计算和实测数据的处理中部取得了良好的效果。

关 键 词:局部放电  白噪声  窄带干扰  小波变换  小波集合  多分辨率分析  最优小波
收稿时间:1900-01-01
修稿时间:1900-01-01

ALGORITHM FOR EXTRACTING PD SIGNALS BASED ON A WAVELET-SET
Xujian,Huang Chengjun,Jin Hao,Shao Zhenyu. ALGORITHM FOR EXTRACTING PD SIGNALS BASED ON A WAVELET-SET[J]. Automation of Electric Power Systems, 2004, 28(16): 36-40
Authors:Xujian  Huang Chengjun  Jin Hao  Shao Zhenyu
Abstract:
As to the known shapes of the PD (partial discharge) pulses, the PD pulse buried in excessive noise can be extracted successfully by multi-resolution signal decomposition that based on the optimal wavelet, and then reconstructed via a proper threshold. However, the actual PDs are always of complex mechanism and different shapes, and a certain single optimal wavelet can often be proven quite limited in a practical case. The paper hereafter proposes an algorithm based on a wavelet-set, which makes use cf the distinguished characteristics of each wavelet in time and frequency domains, so that the diversiform PDs would be extracted more completely, even under excessive discrete spectral interference and white noise. The algorithm is applied both to simulation and practical data and the preferable results are obtained.
Keywords:partial discharge  white noise  discrete spectral interference  wavelet transform  wavelet-set  multi-resolution signal decomposition  optimal wavelet
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《电力系统自动化》浏览原始摘要信息
点击此处可从《电力系统自动化》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号