首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进BP神经网络的孔板应力集中系数预测
引用本文:贾延,刘广君. 基于改进BP神经网络的孔板应力集中系数预测[J]. 煤矿机械, 2008, 29(2): 38-40
作者姓名:贾延  刘广君
作者单位:西北第二民族学院,基础部,银川,750021;西北第二民族学院,材料科学与工程学院,银川,750021
基金项目:西北第二民族学院校级重点项目
摘    要:
在正交试验和无网格法数值计算结果的基础上,针对常用BP算法的不足,采用动量因子与自适应学习速率相结合的改进BP神经网络方法,建立了孔板应力集中系数预测模型。经过计算结果的检验,表明该模型是可行的,对今后孔板应力集中系数预测具有借鉴意义。

关 键 词:应力集中  BP神经网络  孔板  预测
文章编号:1003-0794(2008)02-0038-03
收稿时间:2007-08-28
修稿时间:2007-08-28

Stress Concentration Factors Prediction of Orifice Plate Based on Modified BP Neural Network
JIA Yan,LIU Guang-jun. Stress Concentration Factors Prediction of Orifice Plate Based on Modified BP Neural Network[J]. Coal Mine Machinery, 2008, 29(2): 38-40
Authors:JIA Yan  LIU Guang-jun
Abstract:
Based on orthogonal experiment and numerical calculation results of meshless method, in light of deficiency of the normal BP algorithm, a neural network predictive model for the stress concentration factors of orifice plates established on the basis of the improved BP algorithm in combination of momentum factor and self- adaptive learning rate. Tested by results which export from computer, this model is proved to be feasible, and offers reference to the stress concentration factor prediction of orifice plate.
Keywords:stress concentration   BP neural network   orifice plate   prediction
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号