首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于支撑向量机学习预测井眼轨迹的新方法
引用本文:王延江,杨培杰,史清江,孙正义. 一种基于支撑向量机学习预测井眼轨迹的新方法[J]. 石油学报, 2005, 26(5): 98-101. DOI: 10.7623/syxb200505022
作者姓名:王延江  杨培杰  史清江  孙正义
作者单位:1. 中国石油大学信息与控制工程学院, 山东, 东营, 257061;2. 胜利油田钻井工艺研究院钻井信息中心, 山东, 东营, 257017
基金项目:中国石油化上集团公司科技攻关项目“地质导向钻井工艺技术研究”(JP03009)资助.
摘    要:
对影响井眼轨迹的几个主要因素进行了分析,提出了一种利用小样本统计学习理论中的支撑向量机来进行井眼轨迹预测的新方法,介绍了用于非线性回归估计的支撑向量机的基本原理,通过对一口或几口已钻井的轨迹数据、钻进方式和底部钻具组合结构参数进行学习训练支撑向量机,建立了井眼轨迹的支撑向量机预测模型,并利用多口实钻井的轨迹数据进行了验证。结果表明,这种新方法的预测精度远高于传统的定曲率几何预测方法。

关 键 词:井眼轨迹  预测模型  支撑向量机  结构参数  统计学习理论  
文章编号:0253-2697(2005)05-0098-04
收稿时间:2004-11-22
修稿时间:2004-11-222005-04-11

A novel method for predicting wellbore trajectory based on support vector machine
WANG Yan-jiang,YANG Pei-jie,SHI Qing-jiang,SUN Zheng-yi. A novel method for predicting wellbore trajectory based on support vector machine[J]. Acta Petrolei Sinica, 2005, 26(5): 98-101. DOI: 10.7623/syxb200505022
Authors:WANG Yan-jiang  YANG Pei-jie  SHI Qing-jiang  SUN Zheng-yi
Affiliation:1. College of Information and Control Engineering, China University of Petroleum, Dongying 257061, China;2. Drilling Information Center of Drilling Technology Research Institute, Sinopec Shengli Oilfield, Dongying 257017, China
Abstract:
The main factors affecting well trajectory during drilling were analyzed.A novel method for predicting well trajectory by using support vector machine(SVM)based on small samples of statistical learning theory is presented.The basic principles of support vector for regression(SVR)is introduced.A prediction model for well trajectory was established by training the SVR using the data of wellbore trajectory,drilling mode and the structural parameters for the bottom hole assembly of one or several drilled wells.The proposed prediction model was verified with the trajectory data of a number of drilled wells.This model has higher prediction precision than geometric method.
Keywords:wellbore trajectory   prediction model   support vector machine   structural parameters   statistical learning theory
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《石油学报》浏览原始摘要信息
点击此处可从《石油学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号