首页 | 本学科首页   官方微博 | 高级检索  
     


Chemical Processing of CaHPO4·2H2O:
Authors:A. Cuneyt Tas  Sarit B. Bhaduri
Affiliation:School of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634
Abstract:The aim of this paper is to develop a robust chemical process to synthesize Na- and K-doped brushite (DCPD: dicalcium phosphate dihydrate, CaHPO4·2H2O), a potential starting material for bone substitutes. The powders were synthesized by using sodium phosphate and potassium phosphate and aqueous solutions containing calcium chloride at room temperature, followed by drying at 37°C. DCPD powders thus formed were found to contain 460 ppm K and 945 ppm Na. On calcination in air, these powders readily transformed into monetite (DCPA: dicalcium phosphate anhydrous, CaHPO4) first, and then into Ca2P2O7 (calcium pyrophosphate). Na- and K-doped DCPD powders were shown to completely transform, in less than 1 week, into poorly crystalline carbonated apatite on immersion in an acellular simulated/synthetic body fluid (SBF) solution at 37°C. The Tris (i.e., tris(hydroxymethyl)aminomethane) buffered SBF solution used in this study had a carbonate ion concentration of 27 m M equal to that of human plasma. DCPD powders of this study displayed a notable apatite-inducing ability. This finding suggests the use of these DCPD powders as the starting materials for potential bone substitutes, which can be easily manufactured in aqueous solutions friendly to living tissues, at temperatures between room temperature and 37°C.
Keywords:processing    calcium phosphate    hydroxyapatite
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号