首页 | 本学科首页   官方微博 | 高级检索  
     


Motor performance patterns between unilateral mechanical assistance and bilateral muscle contraction
Affiliation:1. Univ Lyon – UJM-Saint-Etienne, Inter-university Laboratory of Human Movement Science, EA 7424, F-42023 Saint-Etienne, France;2. Department of Orthopedic Surgery, University Hospital of Saint Etienne, France;3. Sydney Orthopaedic Research Institute, Sydney, Australia
Abstract:Motor performance patterns for mechanical assistance on unilateral force control can be affected by simultaneous muscle contraction. This study investigated how muscle activity and motor performance during the cooperation between dominant-arm force control and assistive force are affected by simultaneous non-dominant arm muscle contraction with inertial loading. Eleven participants (age: 24.1 ± 1.7 years) performed trajectory-tracking task based on visual feedback of real-time isometric force control. Their force for dominant-arm elbow flexion was released from reference magnitude of 47 N to magnitude of 23.5 N by providing mechanical assistance of a linear actuator. A 47 N of inertial loading on non-dominant arm elbow flexion was conditionally provided. For four time epochs of the experimental task, we measured responses of the assisted arm in terms of: (1) surface electromyography (EMG) amplitudes of biceps brachii and triceps brachii muscles, (2) peak perturbation, and (3) motor performance of force variability and target overshoot during manual force output. Simultaneous loading on unassisted arm did not affect peak perturbation of assisted arm. However, it caused lower force variability and overshoot ratio during the time epoch of force release and higher EMG amplitudes of biceps brachii muscle during the time epochs after mechanical assistance is provided, compared to the non-loaded condition. Our results indicate that simultaneous muscle contraction affects unilateral force control with mechanical assistance aimed at enhancing motor performance by creating extra agonist muscle activity. These findings can be utilized for improving the performance of human-robot cooperation during manual material handling in many industrial sites.
Keywords:Electromyography  Isometric contraction  Force variability  Target overshoot  Simultaneous loading
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号