首页 | 本学科首页   官方微博 | 高级检索  
     

基于球面Haar小波和卷积神经网络的飞行员虹膜识别
引用本文:贾博, 冯孝鑫, 李军, 俞碧婷, 赵倩, 吴奇. 基于球面Haar小波和卷积神经网络的飞行员虹膜识别[J]. 电子与信息学报, 2021, 43(4): 939-947. doi: 10.11999/JEIT190928
作者姓名:贾博  冯孝鑫  李军  俞碧婷  赵倩  吴奇
作者单位:1.东航技术应用研发中心有限公司 上海 201707;;2.上海交通大学电子信息与电气工程学院 上海 200240;;3.伍伦贡大学 澳大利亚 伍伦贡 2500
基金项目:国家自然科学基金(U1933125)
摘    要:虹膜识别面临两个重要的问题:一是如何精细分解与重构虹膜球面图像;二是如何识别虹膜图特征。虹膜表面几何位置信息是一种重要的信号,传统的虹膜识别通常使用虹膜图像的平面特征,然而人的眼睛是一种球体,从平面图像难以提取到虹膜球体的几何特征。针对平面特征容易出现虹膜纹理的扭曲和失真等问题,该文建议一种正交对称的球面Haar小波(...

关 键 词:虹膜识别  球面Haar小波基  球面信号  正交对称
收稿时间:2019-11-20
修稿时间:2021-01-15

Pilot Iris Recognition Based on Spherical Haar Wavelet and Convolutional Neural Network
Bo JIA, Xiaoxin FENG, Jun LI, Biting YU, Qian ZHAO, Qi WU. Pilot Iris Recognition Based on Spherical Haar Wavelet and Convolutional Neural Network[J]. Journal of Electronics & Information Technology, 2021, 43(4): 939-947. doi: 10.11999/JEIT190928
Authors:Bo JIA  Xiaoxin FENG  Jun LI  Biting YU  Qian ZHAO  Qi WU
Affiliation:1. China Eastern Technology Application R&D Center Co.Ltd., Shanghai 201707, China;;2. School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;;3. University of Wollongong, Wollongong 2500, Australia
Abstract:Iris recognition faces two important issues. they are how to decompose finely and reconstruct the spherical image of the iris, and how to identify the characteristics of the iris. Conventional iris recognition uses usually the planar features of these iris images. However, the human eye is a sphere. The geometric position information of the iris surface is an important signal, but it is difficult to extract the geometric features of the iris sphere from the planar image. Considering the issue that the plane features are prone to distortion and lack fidelity of iris texture, an Orthogonal and Symmetric Spherical Haar Wavelet (OSSHW) basis is proposed to decompose and reconstruct the spherical iris signal to obtain stronger geometric features of iris surface. The comparison of the feature extraction ability to spherical signal by the spherical harmonics and the typical semi-orthogonal or nearly orthogonal spherical Haar wavelet is also presented. And then, an iris recognition method based on Convolutional Neural Networks (CNN) + OSSHW is proposed, which can effectively capture the local fine features of iris spherical surface, and has stronger ability in iris recognition than semi-orthogonal or nearly orthogonal spherical Haar wavelet bases.
Keywords:Iris recognition  Spherical Haar wavelet basis  Spherical signals  Orthogonal and symmetric
点击此处可从《电子与信息学报》浏览原始摘要信息
点击此处可从《电子与信息学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号