首页 | 本学科首页   官方微博 | 高级检索  
     


Efficient Supercapacitor Energy Storage Using Conjugated Microporous Polymer Networks Synthesized from Buchwald–Hartwig Coupling
Authors:Yaozu Liao  Haige Wang  Meifang Zhu  Arne Thomas
Affiliation:1. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, Shanghai, China;2. Department of Chemistry, Functional Materials, Technische Universit?t Berlin, Berlin, Germany
Abstract:Supercapacitors have received increasing interest as energy storage devices due to their rapid charge–discharge rates, high power densities, and high durability. In this work, novel conjugated microporous polymer (CMP) networks are presented for supercapacitor energy storage, namely 3D polyaminoanthraquinone (PAQ) networks synthesized via Buchwald–Hartwig coupling between 2,6‐diaminoanthraquinone and aryl bromides. PAQs exhibit surface areas up to 600 m2 g?1, good dispersibility in polar solvents, and can be processed to flexible electrodes. The PAQs exhibit a three‐electrode specific capacitance of 576 F g?1 in 0.5 m H2SO4 at a current of 1 A g?1 retaining 80–85% capacitances and nearly 100% Coulombic efficiencies (95–98%) upon 6000 cycles at a current density of 2 A g?1. Asymmetric two‐electrode supercapacitors assembled by PAQs show a capacitance of 168 F g?1 of total electrode materials, an energy density of 60 Wh kg?1 at a power density of 1300 W kg?1, and a wide working potential window (0–1.6 V). The asymmetric supercapacitors show Coulombic efficiencies up to 97% and can retain 95.5% of initial capacitance undergo 2000 cycles. This work thus presents novel promising CMP networks for charge energy storage.
Keywords:Buchwald–  Hartwig coupling  conjugated microporous polymers  energy storage  supercapacitors
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号