首页 | 本学科首页   官方微博 | 高级检索  
     

基于LS-SVM 的新机备件需求预测
作者姓名:孙伟奇
作者单位:海军航空大学青岛校区,山东青岛,266041;中国人民解放军91206部队,山东青岛,266108
基金项目:海军装备维修课题"航材消耗周转定额"(ZHJ/材 2011-1055/D001)
摘    要:为解决因新机备件历史消耗数据相对较少而给备件预测工作带来的困难,提出应用最小二乘支持向量机(least squares support vector machine,LS-SVM)回归算法来实现新机备件需求的预测.阐述了最小二乘支持向量机的基本原理,建立了新机备件需求的预测模型,选取核函数,采用LS-SVM对训练样本进行学习,对其网格结构参数进行训练,通过十字交叉验证(cross-validation)和网格搜索(grid-search)确定最优参数,利用训练后的LS-SVM对新机备件需求进行预测,并进行算例仿真.结果表明,LS-SVM在新机备件需求预测上表现优秀.

关 键 词:新机  备件  历史数据  需求预测  最小二乘支持向量机
收稿时间:2018-03-28
修稿时间:2018-04-17
本文献已被 万方数据 等数据库收录!
点击此处可从《兵工自动化》浏览原始摘要信息
点击此处可从《兵工自动化》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号