首页 | 本学科首页   官方微博 | 高级检索  
     


A genetic algorithm approach to cluster analysis
Affiliation:1. Department of Computer Science Virginia Polytechnic Institute and State University Blacksburg, Virginia 24061-0106, U.S.A.;2. Department of Mathematics Virginia Polytechnic Institute and State University Blacksburg, Virginia 24061-0106, U.S.A.
Abstract:
A common problem in the social and agricultural sciences is to find clusters in experimental data; the standard attack is a deterministic search terminating in a locally optimal clustering. We propose here a genetic algorithm (GA) for performing cluster analysis. GAs have been used profitably in a variety of contexts in which it is either impractical or impossible to directly solve for a globally optimal solution to complex numerical problems. In the present case, our GA clustering technique attempted to maximize a variance-ratio (VR) based goodness-of-fit criterion defined in terms of external cluster isolation and internal cluster homogeneity. Although our GA-based clustering algorithm cannot guarantee to recover the cluster solution that exhibits the global maximum of this fitness function, it does explicitly work toward this goal (in marked contrast to existing clustering algorithms, especially hierarchical agglomerative ones such as Ward's method). Using both constrained and unconstrained simulated datasets, Monte Carlo results showed that in some conditions the genetic clustering algorithm did indeed surpass the performance of conventional clustering techniques (Ward's and K-means) in terms of an internal (VR) criterion. Suggestions for future refinement and study are offered.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号