首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进YOLOv5的轻量级芯片封装缺陷检测方法
作者姓名:赖武刚  李家楠  林凡强
作者单位:成都理工大学 机电工程学院,成都 610059
基金项目:四川省科技计划重点研发项目(2020YFS0472)
摘    要:目的 针对芯片封装缺陷检测过程中检测精度低与模型难部署的问题,提出YOLOv5-SPM检测网络,旨在提高检测精度并实现模型轻量化。方法 首先,通过在特征提取模块后增加通道注意力机制,提高缺陷通道的关注度,减少冗余特征的干扰,进而提升目标的检测精度。其次,在主干网络与颈部网络连接处使用快速特征金字塔结构,更好地融合了自建芯片数据集的多尺度特征信息。最后,将主干网络的特征提取模块更换为MobileNetV3,将常规卷积更换为深度卷积和点卷积,有效降低了模型尺寸和计算量。结果 经过改进后的新网络YOLOv5s-SPM在模型参数下降29.5%的情况下,平均精度较原网络提高了0.6%,准确率提高了3.2%。结论 新网络相较于传统网络在芯片缺陷检测任务中实现了模型精度与速度的统一提高,同时由于模型参数减小了29.5%,更适合部署在资源有限的工业嵌入式设备上。

关 键 词:YOLOv5  芯片封装缺陷检测  通道注意力机制  特征金字塔池化  轻量化
收稿时间:2023-04-18
点击此处可从《包装工程》浏览原始摘要信息
点击此处可从《包装工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号