Abstract: | Hydraulics is a promising technology for robots. However, traditional hydraulic infrastructures are often large and power-inefficient, with large power sources that hinder mobility. In contrast, electro-hydrostatic actuators are relatively power efficient, but their cost and weight can be excessive in systems with a higher number of degrees of freedom. In this paper, we propose a new alternating pressure control system for hydraulic systems with a higher number of degrees of freedom based on an alternating pressure source system. In this system, the valves open and close in synchronization with a pump with sensor feedback, allowing either pressure or position in each actuator to be controlled independently. With the proposed system, a centralized pump can be used with simplified tubing and simple on–off valves. Moreover, we developed a dynamic duty ratio system that improves performance and reduces pump utilization time. The experimental results confirmed that both the position and pressure of each actuator can be controlled in parallel on a multi-degree-of-freedom system. |