首页 | 本学科首页   官方微博 | 高级检索  
     

基于强化学习的多Agent协作研究
引用本文:郑淑丽,韩江洪,骆祥峰,蒋建文. 基于强化学习的多Agent协作研究[J]. 小型微型计算机系统, 2003, 24(11): 1986-1988
作者姓名:郑淑丽  韩江洪  骆祥峰  蒋建文
作者单位:合肥工业大学,计算机与信息学院,安徽,合肥,230009
基金项目:安徽省自然科学基金 ( 0 0 0 43 115 )资助
摘    要:
强化学习为多Agent之间的协作提供了鲁棒的学习方法.本文首先介绍了强化学习的原理和组成要素,其次描述了多Agent马尔可夫决策过程MMDP,并给出了Agent强化学习模型.在此基础上,对多Agent协作过程中存在的两种强化学习方式:IL(独立学习)和JAL(联合动作学习)进行了比较.最后分析了在有多个最优策略存在的情况下,协作多Agent系统常用的几种协调机制.

关 键 词:多Agent系统 强化学习 MMDP 协调机制
文章编号:1000-1220(2003)11-1986-03

Cooperative Multi-agent Systems Based on Reinforcement Learning
ZHENG Shu li,HAN Jiang hong,LUO Xiang feng,JIANG Jian wen. Cooperative Multi-agent Systems Based on Reinforcement Learning[J]. Mini-micro Systems, 2003, 24(11): 1986-1988
Authors:ZHENG Shu li  HAN Jiang hong  LUO Xiang feng  JIANG Jian wen
Abstract:
Reinforcement learning can provide a robust and natural means for agents to learn how to coordinate their action choices in fully cooperative multi agent systems (MAS). This paper first introduces the basic principles and components of reinforcement learning, then describes multi agent extension MMDP and presents reinforcement learning model of agents in cooperative MAS. After that we distinguish reinforcement learners that ignore the presence of other agents from those that explicitly attempt to learn the value of joint actions and strategies of their counterparts. In the last, some simple and commonly used coordination mechanisms are examined.
Keywords:multi agent system  reinforcement learning  multi agent MDP  coordination mechanisms
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号