首页 | 本学科首页   官方微博 | 高级检索  
     


Fe2VO4 Hierarchical Porous Microparticles Prepared via a Facile Surface Solvation Treatment for High‐Performance Lithium and Sodium Storage
Authors:Yanzhu Luo  Dekang Huang  Chennan Liang  Pei Wang  Kang Han  Buke Wu  Feifei Cao  Liqiang Mai  Hao Chen
Abstract:
Preventing the aggregation of nanosized electrode materials is a key point to fully utilize the advantage of the high capacity. In this work, a facile and low‐cost surface solvation treatment is developed to synthesize Fe2VO4 hierarchical porous microparticles, which efficiently prevents the aggregation of the Fe2VO4 primary nanoparticles. The reaction between alcohol molecules and surface hydroxy groups is confirmed by density functional theory calculations and Fourier transform infrared spectroscopy. The electrochemical mechanism of Fe2VO4 as lithium‐ion battery anode is characterized by in situ X‐ray diffraction for the first time. This electrode material is capable of delivering a high reversible discharge capacity of 799 mA h g?1 at 0.5 A g?1 with a high initial coulombic efficiency of 79%, and the capacity retention is 78% after 500 cycles. Moreover, a remarkable reversible discharge capacity of 679 mA h g?1 is achieved at 5 A g?1. Furthermore, when tested as sodium‐ion battery anode, a high reversible capacity of 382 mA h g?1 can be delivered at the current density of 1 A g?1, which still retains at 229 mA h g?1 after 1000 cycles. The superior electrochemical performance makes it a potential anode material for high‐rate and long‐life lithium/sodium‐ion batteries.
Keywords:hierarchical porous microparticles  iron vanadium oxide  lithium‐ion batteries  sodium‐ion batteries  surface solvation treatment
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号