首页 | 本学科首页   官方微博 | 高级检索  
     


Impact of non‐solvent on regeneration of cellulose dissolved in 1‐(carboxymethyl)pyridinium chloride ionic liquid
Authors:Nazanin Taheri  Amir Abdolmaleki  Hossein Fashandi
Abstract:Cellulose dissolved in ionic liquid (1‐(carboxymethyl)pyridinium chloride)/water (60/40 w/w) mixture is regenerated in various non‐solvents, namely water, ethanol, methanol and acetone, to gain more insight into the contribution of non‐solvent medium to the morphology of regenerated cellulose. To this end, the initial and regenerated celluloses were characterized with respect to crystallinity, thermal stability, chemical structure and surface morphology using wide‐angle X‐ray diffraction, thermogravimetric analysis, Fourier transform infrared spectroscopy and scanning electron microscopy. According to the results, regardless of non‐solvent type, all regenerated samples have the same chemical structure and lower crystallinity in comparison to the initial cellulose, making them a promising candidate for efficient biofuel production based on enzymatic hydrolysis of cellulose. The reduction in crystallinity of regenerated samples is explained based on the potential of the non‐solvent to break the hydrogen bonds between cellulose chains and ionic liquid molecules as well as the affinity of water and non‐solvent which can be evaluated based on Hansen solubility parameter. The latter also determines the phase‐separation mechanism during the regeneration process, which in turn affects surface morphology of the regenerated cellulose. The pivotal effect of regenerated cellulose crystallinity on its thermal stability is also demonstrated. Regenerated cellulose with lower crystallinity is more susceptible to molecular rearrangement during heating and hence exhibits enhanced thermal stability. © 2019 Society of Chemical Industry
Keywords:cellulose dissolution  regenerated cellulose  ionic liquid  non‐solvent  crystallinity
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号