首页 | 本学科首页   官方微博 | 高级检索  
     


A Biodegradable and Stretchable Protein‐Based Sensor as Artificial Electronic Skin for Human Motion Detection
Authors:Chen Hou  Zijie Xu  Wu Qiu  Ronghui Wu  Yanan Wang  Qingchi Xu  Xiang Yang Liu  Wenxi Guo
Abstract:Due to the natural biodegradability and biocompatibility, silk fibroin (SF) is one of the ideal platforms for on‐skin and implantable electronic devices. However, the development of SF‐based electronics is still at a preliminary stage due to the SF film intrinsic brittleness as well as the solubility in water, which prevent the fabrication of SF‐based electronics through traditional techniques. In this article, a flexible and stretchable silver nanofibers (Ag NFs)/SF based electrode is synthesized through water‐free procedures, which demonstrates outstanding performance, i.e., low sheet resistance (10.5 Ω sq?1), high transmittance (>90%), excellent stability even after bending cycles >2200 times, and good extensibility (>60% stretching). In addition, on the basis of such advanced (Ag NFs)/SF electrode, a flexible and tactile sensor is further fabricated, which can simultaneously detect pressure and strain signals with a large monitoring window (35 Pa–700 kPa). Besides, this sensor is air‐permeable and inflammation‐free, so that it can be directly laminated onto human skins for long‐term health monitoring. Considering the biodegradable and skin‐comfortable features, this sensor may become promising to find potential applications in on‐skin or implantable health‐monitoring devices.
Keywords:flexible sensors  protein‐based electronics  silk fibroin  transparent flexible electrodes
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号