首页 | 本学科首页   官方微博 | 高级检索  
     

利用风格迁移和特征点的多模态图像配准算法
引用本文:宋智礼,张家齐,熊亮,何鹄. 利用风格迁移和特征点的多模态图像配准算法[J]. 遥感信息, 2021, 0(1): 1-6
作者姓名:宋智礼  张家齐  熊亮  何鹄
作者单位:上海应用技术大学计算机科学与信息工程学院;中国人民解放军32184部队
基金项目:上海市联盟计划项目(LM201814、LM201975);复旦大学上海市智能信息处理重点实验室开放课题(IIPL-2014-007)。
摘    要:
由于多模态遥感图像在光谱成份上存在巨大的差异,传统图像配准算法在该类图像的配准中正确率非常低.针对这一难题,提出了一种利用风格迁移和特征点的图像配准算法.首先,利用卷积神经网络对基准图像的风格特征以及待配准图像的内容特征进行抽取并重新组合,得到一幅与基准图像差异性较小的生成图像;其次,通过图像分割的方法分离出待配准图像...

关 键 词:风格迁移  SURF  特征点  多模态  图像配准

Multimodal Image Registration Algorithm Using Style Transfer and Feature Points
SONG Zhili,ZHANG Jiaqi,XIONG Liang,HE Hu. Multimodal Image Registration Algorithm Using Style Transfer and Feature Points[J]. Remote Sensing Information, 2021, 0(1): 1-6
Authors:SONG Zhili  ZHANG Jiaqi  XIONG Liang  HE Hu
Affiliation:(School of Computer Science and Information Engineering,Shanghai Institute of Technology,Shanghai 201418,China;People’s Liberation Army of China 32184,Beijing 100071,China)
Abstract:
Due to the huge difference in spectral composition of multimodal remote sensing images,the accuracy of traditional image registration algorithms of such images is very low.To address this problem,an image registration algorithm using style transfer and feature points is proposed.Firstly,use the convolutional neural network to extract and recombine the style features of the reference image and the content features of the image to be registered,and obtain a generated image with a small difference from the reference image.Secondly,the image segmentation method is used to separate the parts of the image to be registered that have no obvious texture information,and to remove the redundant texture in the generated image.Finally,use speed up robust features(SURF)algorithm to extract feature points and perform image registration.Experimental results show that,compared with traditional image registration algorithms,this method effectively improves the accuracy and robustness of multimodal remote sensing image registration.
Keywords:style transfer  SURF  feature point  multimodal  image registration
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号