首页 | 本学科首页   官方微博 | 高级检索  
     

基于YOLO-IDSTD算法的红外弱小目标检测
作者姓名:蒋昕昊  蔡伟  杨志勇  徐佩伟  姜波
作者单位:火箭军工程大学 兵器发射理论与技术国家重点学科实验室,陕西 西安 710025
摘    要:针对复杂背景下红外弱小目标难以准确快速检测的问题,提出了一种红外弱小目标轻量化实时检测网络模型YOLO-IDSTD。首先,为提高检测速度,重新设计了特征提取部分的网络结构,并在输入层后使用Focus模块以减少推理时间;其次,为增强检测能力,特征融合部分采用路径聚合网络,添加了改进的感受野增强模块;最后,目标检测部分增加至四尺度检测。在红外弱小目标数据集上进行的对比实验表明,相较于经典轻量化模型YOLOv3-tiny,文中提出的模型召回率提升了7.57%,平均检测精度提高了1.92%,CPU推理速度提升了36.1%,可较好地兼顾精度和速度,计算量与参数量明显减少,模型尺寸压缩至7.27 MB,减少了对硬件平台运算能力的依赖,实现了红外弱小目标准确又快速的检测。

关 键 词:红外弱小目标   深度学习   目标检测   机器视觉   YOLO
收稿时间:2021-02-20
点击此处可从《红外与激光工程》浏览原始摘要信息
点击此处可从《红外与激光工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号