首页 | 本学科首页   官方微博 | 高级检索  
     


Data-Based Optimal Tracking of Autonomous Nonlinear Switching Systems
Xiaofeng Li, Lu Dong and Changyin Sun, "Data-Based Optimal Tracking of Autonomous Nonlinear Switching Systems," IEEE/CAA J. Autom. Sinica, vol. 8, no. 1, pp. 227-238, Jan. 2021. doi: 10.1109/JAS.2020.1003486
Authors:Xiaofeng Li  Lu Dong  Changyin Sun
Abstract:In this paper, a data-based scheme is proposed to solve the optimal tracking problem of autonomous nonlinear switching systems. The system state is forced to track the reference signal by minimizing the performance function. First, the problem is transformed to solve the corresponding Bellman optimality equation in terms of the Q-function (also named as action value function). Then, an iterative algorithm based on adaptive dynamic programming (ADP) is developed to find the optimal solution which is totally based on sampled data. The linear-in-parameter (LIP) neural network is taken as the value function approximator. Considering the presence of approximation error at each iteration step, the generated approximated value function sequence is proved to be boundedness around the exact optimal solution under some verifiable assumptions. Moreover, the effect that the learning process will be terminated after a finite number of iterations is investigated in this paper. A sufficient condition for asymptotically stability of the tracking error is derived. Finally, the effectiveness of the algorithm is demonstrated with three simulation examples. 
Keywords:Adaptive dynamic programming   approximation error   data-based control   Q-learning   switching system
本文献已被 维普 等数据库收录!
点击此处可从《IEEE/CAA Journal of Automatica Sinica》浏览原始摘要信息
点击此处可从《IEEE/CAA Journal of Automatica Sinica》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号