首页 | 本学科首页   官方微博 | 高级检索  
     

云边智能: 电力系统运行控制的边缘计算方法及其应用现状与展望
引用本文:白昱阳, 黄彦浩, 陈思远, 张俊, 李柏青, 王飞跃. 云边智能: 电力系统运行控制的边缘计算方法及其应用现状与展望. 自动化学报, 2020, 46(3): 397−410 doi: 10.16383/j.aas.2020.y000001
作者姓名:白昱阳  黄彦浩  陈思远  张俊  李柏青  王飞跃
作者单位:1.武汉大学电气与自动化学院 武汉 430072;;2.中国电力科学研究院有限公司 北京 100192;;3.中国科学院自动化研究所复杂系统管理与控制国家重点实验室 北京 100190
基金项目:国家电网公司科技项目(XT71-19-032)资助
摘    要:本文分析了当前我国电力系统的运行与控制面临的挑战, 对边缘计算的发展背景和关键技术进行了介绍, 阐述了云边协同和边边协同的功能与特征, 并对边缘协同技术下的边缘智能技术进行了探讨. 结合电力系统的层级式构架, 讨论了在电网部署边缘计算层的方法, 提出利用云边协同、边边协同、边缘智能等技术解决电力系统面临的实时性高、数据周期短、任务复杂等难题, 在减轻边缘节点与云中心通信压力的同时, 提高业务服务质量, 保障边缘节点的数据隐私. 通过对边缘计算在“源 − 网 − 荷”各环节的应用前景进行分析与讨论, 阐述了边缘计算在电网中的可行性与实用性. 最后, 对边缘计算的应用范式与方案进行了总结, 并对其在未来电力系统中的发展方向进行了展望.

关 键 词:边缘计算   云计算   云边协同技术   边缘智能   电力系统运行控制
收稿时间:2019-11-08

Cloud-edge Intelligence: Status Quo and Future Prospective of Edge Computing Approaches and Applications in Power System Operation and Control
Bai Yu-Yang, Huang Yan-Hao, Chen Si-Yuan, Zhang Jun, Li Bai-Qing, Wang Fei-Yue. Cloud-edge intelligence: status quo and future prospective of edge computing approaches and applications in power system operation and control. Acta Automatica Sinica, 2020, 46(3): 397−410 doi: 10.16383/j.aas.2020.y000001
Authors:BAI Yu-Yang  HUANG Yan-Hao  CHEN Si-Yuan  ZHANG Jun  LI Bai-Qing  WANG Fei-Yue
Affiliation:1. School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072;;2. China Electric Power Research Institute, Beijing 100192;;3. State Key Laboratory for Management and Control of Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190
Abstract:In this paper, the current challenges faced by China′ s power grid are analyzed, and the corresponding developmental background and key techniques of edge computing are introduced, including the functionalities and features of cloud-edge coordination and edge-edge coordination. Then, edge intelligence resulted from edge coordination is discussed. Considering the hierarchical architecture of power grids, the deployment of edge computing layer for power grid operation and control is illustrated in details. Through reducing communication data volume among edge nodes and the cloud center, the edge computing architecture and corresponding coordination mechanism aims to improve real-time performance of complex grid tasks, bring distributed intelligence to the system, while protecting data privacy of the edge nodes. Finally, the application paradigms of edge computing are summarized, and its future developmental directions in the power system operation and control are prospected.
Keywords:Edge computing  cloud computing  cloud-edge coordination  edge intelligence  power system operation and control
点击此处可从《自动化学报》浏览原始摘要信息
点击此处可从《自动化学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号