首页 | 本学科首页   官方微博 | 高级检索  
     


Parallel hybrid particle/finite volume algorithm for transported PDF methods employing sub-time stepping
Authors:B Rembold  M Grass
Affiliation:Institute of Fluid Dynamics, ETH Zurich, Sonneggstrasse 3, CH-8092 Zurich, Switzerland
Abstract:A previously presented hybrid finite volume/particle method for the solution of the joint-velocity-frequency-composition probability density function (JPDF) transport equation in complex 3D geometries is extended for parallel computing. The parallelization strategy is based on domain decomposition. The finite volume method (FVM) and the particle method (PM) are parallelized separately and the algorithm is fully synchronous. For the FVM a standard method based on transferring data in ghost cells is used. Moreover, a subdomain interior decomposition algorithm to efficiently solve the implicit time integration for hyperbolic systems is described. The parallelization of the PM is more complicated due to the use of a sub-time stepping algorithm for the particle trajectory integration. Hereby, each particle obeys its local CFL criterion, and the covered distances per global time step can vary significantly. Therefore, an efficient algorithm which deals with this issue and has minimum communication effort was devised and implemented. Numerical tests to validate the parallel vs. the serial algorithm are presented, where also the effectiveness of the subdomain interior decomposition for the implicit time integration was investigated. A 3D dump-combustor configuration test case with about 2.5 × 105 cells was used to demonstrate the good performance of the parallel algorithm. The hybrid algorithm scales well and the maximum speedup on 60 processors for this configuration was 50 (≈80% parallel efficiency).
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号