首页 | 本学科首页   官方微博 | 高级检索  
     

基于最大类间后验交叉熵的阈值化分割算法
引用本文:薛景浩,章毓晋,林行刚. 基于最大类间后验交叉熵的阈值化分割算法[J]. 中国图象图形学报, 1999, 4(2)
作者姓名:薛景浩  章毓晋  林行刚
作者单位:清华大学电子工程系
摘    要:从目标和背景的类间差异性出发,提出了一种基于最大类间交叉熵准则的阈值化分割新算法。该算法假设目标和背景象素的条件分布服从正态分布,利用贝叶斯公式估计象素属于目标和背景两类区域的后验概率,再搜索这两类区域后验概率之间的最大交叉熵。比较了新算法与基于最小交叉熵以及基于传统香农熵的阈值化算法的特点和分割性能。

关 键 词:图象分割  阈值化  香农熵  交叉熵  后验概率

Image Thresholding Based on Maximum Between Class Posterior Cross Entropy
Xue Jinghao,Zhang Yujin,Lin Xinggang. Image Thresholding Based on Maximum Between Class Posterior Cross Entropy[J]. Journal of Image and Graphics, 1999, 4(2)
Authors:Xue Jinghao  Zhang Yujin  Lin Xinggang
Abstract:Although several image thresholding algorithms based on minimum cross entropy criterion have been proposed in recent years, only the form of the criterion or a priori probability and conditional probability was employed. In this paper, a new algorithm based on maximum between class cross entropy using a posterior probability is presented for image thresholding taken into account the dissimilarity between object and background in image. Suppose the conditional distributions of object and background are modeled with normal distributions, the a posterior probabilities are computed by Bayes formula. The new algorithm is compared with a number of traditional algorithms based on Shannon entropy and minimum cross entropy by applying them to various test images.
Keywords:Image segmentation   Thresholding   Shannon Entropy   Cross entropy   A posterior probability  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国图象图形学报》浏览原始摘要信息
点击此处可从《中国图象图形学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号