首页 | 本学科首页   官方微博 | 高级检索  
     


Atrial activity enhancement by Wiener filtering using an artificial neural network
Authors:Vásquez C  Hernández A  Mora F  Carrault G  Passariello G
Affiliation:Grupo de Bioingeniería y Biofísica Aplicada, Universidad Simón Bolívar, Caracas, Venezuela.
Abstract:This paper describes a novel technique for the cancellation of the ventricular activity for applications such as P-wave or atrial fibrillation detection. The procedure was thoroughly tested and compared with a previously published method, using quantitative measures of performance. The novel approach estimates, by means of a dynamic time delay neural network (TDNN), a time-varying, nonlinear transfer function between two ECG leads. Best results were obtained using an Elman TDNN with nine input samples and 20 neurons, employing a sigmoidal tangencial activation in the hidden layer and one linear neuron in the output stage. The method does not require a previous stage of QRS detection. The technique was quantitatively evaluated using the MIT-BIH arrhythmia database and compared with an adaptive cancellation scheme proposed in the literature. Results show the advantages of the proposed approach, and its robustness during noisy episodes and QRS morphology variations.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号