首页 | 本学科首页   官方微博 | 高级检索  
     

基于SVM的遥感影像空间特征提取和分类研究
引用本文:卢伟,文鸿雁,李淑. 基于SVM的遥感影像空间特征提取和分类研究[J]. 山西建筑, 2009, 35(5): 10-12
作者姓名:卢伟  文鸿雁  李淑
作者单位:桂林工学院,广西,桂林,541004
基金项目:国家自然科学基金资助项目(项目编号:40574002)
摘    要:
提出了基于支撑向量机(SVM)的遥感影像空间特征提取的新方法,并以融合后的SPOT多源影像上空间特征信息的提取、分类为应用实例,通过试验分析,得出SVM方法不但能够获得比较高的分类精度,而且在分类器训练时间和分类时间上都有很好的应用前景。

关 键 词:支撑向量机(SVM)  遥感影像  空间特征向量

The feature excavation and assorting study on remote sensing figure space based on SVM
LU Wei,WEN Hong-yan,LI Shu. The feature excavation and assorting study on remote sensing figure space based on SVM[J]. Shanxi Architecture, 2009, 35(5): 10-12
Authors:LU Wei  WEN Hong-yan  LI Shu
Affiliation:LU Wei WEN Hong-yan LI Shu
Abstract:
The new method of feature excavation of remote sensing figure space based on Sustaining Vector Machine(SVM) was proposed.With the applied example of SPOT polygene figure spatial feature information excavation and assorting after integration,through experimental analysis,it can be concluded that SVM method not only obtained higher assorting precision,but also had better application forecast in training time and assorting time of categorizer.
Keywords:Supporting Vector Machine (SVM)   remote sensing figure   spatial featured vector
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号