首页 | 本学科首页   官方微博 | 高级检索  
     

基于k-prototypes的混合属性数据聚类算法
引用本文:陈韡,王雷,蒋子云. 基于k-prototypes的混合属性数据聚类算法[J]. 计算机应用, 2010, 30(8): 2003-2005
作者姓名:陈韡  王雷  蒋子云
作者单位:1. 湖南大学软件学院2. 湖南大学3. 中南大学 信息科学与工程学院 电子创新研究所
摘    要:
通过对基于K-prototypes算法对混合属性数据处理的聚类问题进行研究,改进了K-prototypes算法中分类属性相异度计算公式,使之能更加精确反映样本间的差异;在此基础上提出了一种用于处理混合属性数据的聚类算法,并将改进后的算法应用于英语借词数据的聚类分析中。实验结果表明,与K-prototypes算法相比,改进后的算法具有更好的稳定性和更高的精度。

关 键 词:聚类  k-prototypes算法  混合属性数据  相异度  
收稿时间:2010-02-07
修稿时间:2010-03-07

K-prototypes based clustering algorithm for data mixed with numeric and categorical values
CHEN Wei,WANG Lei,JIANG Zi-yun. K-prototypes based clustering algorithm for data mixed with numeric and categorical values[J]. Journal of Computer Applications, 2010, 30(8): 2003-2005
Authors:CHEN Wei  WANG Lei  JIANG Zi-yun
Abstract:
Based on the K-prototypes, the clustering problem for data mixed with numeric and categorical values was researched in this paper. At first, an improved formula for computing the dissimilarity degree was proposed, compared with the formula in the K-prototypes algorithm. The modified formula can reflect the samples similarities and differences more precisely. Furthermore, a new clustering algorithm for data mixed with numeric and categorical values was presented on the basis of the improved formula for computing the dissimilarity degree, which was finally applied in the clustering analysis of English loanwords. The experimental results show that the new algorithm has better stability and higher precision than the traditional K-prototypes algorithm.
Keywords:clustering   k-prototypes algorithm   data with mixed numeric and categorical values   dissimilarity
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号