首页 | 本学科首页   官方微博 | 高级检索  
     


Numerical evaluation of NOx mechanisms in methane-air counterflow premixed flames
Authors:Eun-Seong Cho  Suk Ho Chung
Affiliation:(1) Process and Energy, Delft University of Technology, 2628 CA Delft, The Netherlands;(2) School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, 151-744, Korea
Abstract:
The control of nitrogen oxides (NOx) has been a major issue in designing combustion systems, since NOx play a key role in ozone depletion and the generation of photochemical smog. The characteristics of NOx emission can be essential information for the development of a clean combustor having suitable reduction methodologies. In the present study, NOx emission characteristics were evaluated numerically, accounting for the effect of equivalence ratio, stretch rate, pressure, and initial temperature. In general, peak NOx emission appeared near the equivalence ratio of unity case, and NOx emission increased with pressure and initial temperature due to the temperature sensitivity in NOx mechanism. NOx decreased with stretch rate due to the decrease in residence time in high temperature region. Furthermore, the thermal and prompt mechanisms were evaluated with equivalence ratio for two calculation methods. The conventional methods ignore the interaction of coupled mechanism of thermal and prompt NOx. The reaction path diagram was introduced to understand effective reaction pathways in various conditions. This paper was recommended for publication in revised form by Associate Editor Kyoung Doug Min Dr. Eun-Seong Cho received his B.S. and M.S. degrees in Mechanical Engineering from Hanyang University, Korea, in 1996 and 1998, respectively. He then received his Ph.D. degree from Seoul National University, Korea, in 2005. He was a principal engineer of KD Navien research center and currently a research associate at Delft University of Technology, The Netherlands. His research interests include eco-friendly clean combustion technology, new and renewable energy systems. Prof. Suk Ho Chung received his B.S. degree from Seoul National University, Korea, in 1976 and Ph.D. degree in Mechanical Engineering from Northwestern University, USA, in 1983. He is a Professor since 1984 in the School of Mechanical and Aerospace Engineering at Seoul National University in Seoul, Korea. His research interests cover combustion fundamentals, pollutant formation, laser diagnostics, and plasma-assisted combustion.
Keywords:CHEMKIN  Counterflow premixed flame  Thermal NOx   Prompt NOx
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号