首页 | 本学科首页   官方微博 | 高级检索  
     

基于决策树的数据挖掘算法优化研究
引用本文:林震,王威. 基于决策树的数据挖掘算法优化研究[J]. 电脑与微电子技术, 2012, 0(19): 11-14
作者姓名:林震  王威
作者单位:[1]桂林电子科技大学教学实践部,桂林541004 [2]中兴通讯股份有限公司,深圳518057
摘    要:决策树模型是数据挖掘中最常用的一种方法,具有较好的分类预测能力,并能方便提取决策规则。基于相似性原理,以测试属性和决策属性的相似度作为启发规则构建决策树。提出了一种新的决策树生成算法。并在高校教师综合考评系统中采用了这种新算法,实验结果表明这种新的决策树生成算法预测精度较高,计算也比较简便。

关 键 词:数据挖掘  决策树  ID3算法  属性相似度

Research on Optimizing Data Mining Algorithms Based on Decision Tree
LIN Zhen,WANG Wei. Research on Optimizing Data Mining Algorithms Based on Decision Tree[J]. , 2012, 0(19): 11-14
Authors:LIN Zhen  WANG Wei
Affiliation:1. Practice and Experiment Station, Guilin University of Electronic Technology, Guilin 541004; 2. Zhongxing Telecom Equipment Corporation, Shenzhen 518057)
Abstract:The decision tree model is the most frequently used in the data mining, it is good classification and prediction's ability, and it can be convenient to draw the decision rule. Takes the similar degree of attribute between the test and the decision as the inspiring rule to produce the deci- sion tree,and then presents a new algorithm. In the system of the university teacher's synthetic comparison, we use the new algorithm to build a decision tree. And the experimental result in- dicates that the forecast precision of the new algorithm is better, and the computation is sim- pler.
Keywords:Data Mining  Decision Tree  ID3 Algorithm  Similar Degree of Attribute
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号