首页 | 本学科首页   官方微博 | 高级检索  
     

基于蚁群算法的电力负荷预测方法研究
引用本文:陈锦涛,江哲恒. 基于蚁群算法的电力负荷预测方法研究[J]. 电脑与微电子技术, 2012, 0(15): 23-26,33
作者姓名:陈锦涛  江哲恒
作者单位:南京工程学院电力工程学院,南京211167
摘    要:
为了提高负荷预测的精度,提出基于改进蚁群算法的电力负荷组合预测方法。该方法以回归分析、灰色模型、二次指数平滑值、龚帕兹模型、弹性系数法、逻辑斯谛模型法、二次移动平均模型为基础建立负荷组合预测模型,利用改进蚁群算法优化组合预测模型的权值,并与单个预测模型进行比较。预测结果表明,基于改进蚁群算法的电力负荷组合预测方法,运算速度快,预测精度高,相对误差小,有一定的实用价值。

关 键 词:组合预测  蚁群算法  负荷预测  权重

Research on Power Load Forecasting Method Based on Ant Colony Algorithm
CHEN Jin-tao,JIANG Zhe-heng. Research on Power Load Forecasting Method Based on Ant Colony Algorithm[J]. , 2012, 0(15): 23-26,33
Authors:CHEN Jin-tao  JIANG Zhe-heng
Affiliation:(School of Electric Power Engineering ,Nanjing Institute of Technolog), Nan.jing 211167)
Abstract:
lu order to improve the accuracy of load forecasting, puts forward the combinatiou forecasting method of electrie power load whieh is based on improved ant colony algorithm. This method establishes load forecast model based on regression analysis, gray model, the two exponential smoothing values, Gompertz model, elastic coefficient method, logistic model, the two, moviug average model. Uses improved ant colony algorithm to decide the weights of optimization combi- nation forecast model, then to compare with single forecasting model. The forecasting resuh shows that the combination forecasting method of electric power based on improved aut colony algorithm has a certain practical value because of its fast operation speed, high accuracy and the smaller relative error.
Keywords:Combination Forecasting  Ant Colony  Electric Load Forecasting  Weight
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号