Graph optimization for dimensionality reduction with sparsity constraints |
| |
Authors: | Limei Zhang Songcan Chen Lishan Qiao |
| |
Affiliation: | 1. Department of Computer Science and Engineering, Nanjing University of Aeronautics & Astronautics, 210016 Nanjing, PR China;2. Department of Mathematics Science, Liaocheng University, 252000 Liaocheng, PR China |
| |
Abstract: | ![]() Graph-based dimensionality reduction (DR) methods play an increasingly important role in many machine learning and pattern recognition applications. In this paper, we propose a novel graph-based learning scheme to conduct Graph Optimization for Dimensionality Reduction with Sparsity Constraints (GODRSC). Different from most of graph-based DR methods where graphs are generally constructed in advance, GODRSC aims to simultaneously seek a graph and a projection matrix preserving such a graph in one unified framework, resulting in an automatically updated graph. Moreover, by applying an l1 regularizer, a sparse graph is achieved, which models the “locality” structure of data and contains natural discriminating information. Finally, extensive experiments on several publicly available UCI and face databases verify the feasibility and effectiveness of the proposed method. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|