A radar cross-section model for power lines at millimeter-wave frequencies |
| |
Authors: | Sarabandi K. Moonsoo Park |
| |
Affiliation: | Dept. of Electr. Eng. & Comput. Sci., Univ. of Michigan, Ann Arbor, MI, USA; |
| |
Abstract: | The knowledge of radar backscatter characteristics of high-voltage power lines is of great importance in the development of a millimeter-wave wire detection system. In this paper, a very high-frequency technique based on an iterative physical optics approach is developed for predicting polarimetric radar backscattering behavior of power lines of arbitrary strand arrangement. In the proposed scattering model the induced surface current is obtained using the tangent plane approximation in an iterative manner where the first-order current, obtained from the incident wave, is used as the source for the second-order current and so on. The approximation is valid for frequencies where the cable strand diameter is on the order of or larger than the wavelength. It is shown that the copolarized backscatter is dominated by the contribution from the first-order PO currents, whereas the cross-polarized backscatter is generated by the second- and higher order PO currents. Using this model, the effects of radar antenna footprint, surface irregularities, and cable sag (when suspended between towers) on radar backscatter are studied. To verify the validity of the proposed model, theoretical results are compared at 94 GHz with experimental results and are found to be in good agreement. |
| |
Keywords: | |
|
|