首页 | 本学科首页   官方微博 | 高级检索  
     


Simulated annealing for maximum a posteriori parameter estimationof hidden Markov models
Authors:Andrieu   C. Doucet   A.
Affiliation:Dept. of Eng., Cambridge Univ.;
Abstract:Hidden Markov models are mixture models in which the populations from one observation to the next are selected according to an unobserved finite state-space Markov chain. Given a realization of the observation process, our aim is to estimate both the parameters of the Markov chain and of the mixture model in a Bayesian framework. We present an original simulated annealing algorithm which, in the same way as the EM (expectation-maximization) algorithm, relies on data augmentation, and is based on stochastic simulation of the hidden Markov chain. This algorithm is shown to converge toward the set of maximum a posteriori (MAP) parameters under suitable regularity conditions
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号