首页 | 本学科首页   官方微博 | 高级检索  
     

大坝监控小波去噪变权支撑向量回归机模型
引用本文:徐国龙,覃江峰,方卫华. 大坝监控小波去噪变权支撑向量回归机模型[J]. 水利水文自动化, 2011, 0(6): 22-25
作者姓名:徐国龙  覃江峰  方卫华
作者单位:1. 水利部南京水利水文自动化研究所,江苏南京,210012
2. 广西壮族自治区水利科学研究院,广西南宁,530023
摘    要:为有效利用监控模型和指标判别大坝安全性态,实现大坝安全预警。首先利用小波分析对实测数据进行去噪处理,在此基础上利用支撑向量机小样本建模和高泛化能力,考虑不同幅度测值对大坝预警所起的作用不同,从而建立大坝监控变权支撑向量回归机模型。工程实例和理论分析表明,模型具有一定的理论和实用价值。

关 键 词:大坝安全  监测预警  监控指标  小波分析  峰值识别  变权支撑向量回归机

Support Vector Machine Model for Dam Security Monitoring
XU Guolong ,TAN Jiangfeng ,FANG Weihua. Support Vector Machine Model for Dam Security Monitoring[J]. Automation in Water Resources and Hydrology, 2011, 0(6): 22-25
Authors:XU Guolong   TAN Jiangfeng   FANG Weihua
Affiliation:XU Guolong 1,TAN Jiangfeng 2,FANG Weihua 1(1.Nanjing Research Institute of Automation for Water Conservancy and Hydrology,Nanjing 210012,China,2.Research Institute of Water Resources of Gangxi Zhuang Autonomous Region,Nanning 530023,China)
Abstract:Monitoring model and indicators can be effectively applied for the judgment of dam performance to realize early warning for dam security.Based on sudden change suppression of measured data by wavelet analysis,small-sample model establishment of support vector regression and high generalization ability are applied to set up variable weight support vector regression model for dam monitoring,with consideration on that measured value of different ranges will play different role in early warning for dam monitori...
Keywords:dam security  monitoring and early warning  monitoring indicators  wavelet analysis  peak recognition  variable weight support vector regression  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号