首页 | 本学科首页   官方微博 | 高级检索  
     


Thermal degradation kinetics of thermotropic poly(p‐oxybenzoate‐co‐p,p′‐biphenylene terephthalate) fiber
Authors:Xin‐Gui Li  Mei‐Rong Huang
Abstract:An advanced heat‐resistant fiber (trade name Ekonol) spun from a nematic liquid crystalline melt of thermotropic wholly aromatic poly(p‐oxybenzoate‐p,p′‐biphenylene terephthalate) has been subjected to a dynamic thermogravimetry in nitrogen and air. The thermostability of the Ekonol fiber has been studied in detail. The thermal degradation kinetics have been analyzed using six calculating methods including five single heating rate methods and one multiple heating rate method. The multiple heating‐rate method gives activation energy (E), order (n), frequency factor (Z) for the thermal degradation of 314 kJ mol−1, 4.1, 7.02 × 1020 min−1 in nitrogen, and 290 kJ mol−1, 3.0, 1.29 × 1019 min−1 in air, respectively. According to the five single heating rate methods, the average E, n, and Z values for the degradation were 178 kJ mol−1, 2.1, and 1.25 × 1010 min−1 in nitrogen and 138 kJ mol−1, 1.0, and 6.04 × 107 min−1 in air, respectively. The three kinetic parameters are higher in nitrogen than in air from any of the calculating techniques used. The thermostability of the Ekonol fiber is substantially higher in nitrogen than in air, and the decomposition rate in air is higher because oxidation process is occurring and accelerates thermal degradation. The isothermal weight‐loss results predicted based on the nonisothermal kinetic data are in good agreement with those observed experimentally in the literature. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1923–1931, 1999
Keywords:wholly aromatic polymer  thermotropic liquid crystalline polyester  Ekonol fiber  poly(p‐oxybenzoate‐co‐p,p′  ‐biphenylene terephthalate)  thermogravimetry  thermostability  thermal degradation kinetics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号