首页 | 本学科首页   官方微博 | 高级检索  
     


Joint effect of quasicrystalline icosahedral and L12-strucutred phases precipitation on the grain structure and mechanical properties of aluminum-based alloys
Authors:AGMochugovskiy  NYuTabachkova  MEsmaeili Ghayoumabadi  VVCheverikin  AVMikhaylovskaya
Abstract:Dispersoid hardening is a key factor in increasing the recrystallization resistance and mechanical strength of non-heat treatable aluminum-based alloys.Mn and Zr are the main elements that form dispersoids in commercial Al-based alloys.In this work,the annealing-induced precipitation behavior,the grain struc-ture,and the mechanical properties of Al-3.0Mg-1.1 Mn and Al-3.0Mg-1.1 Mn-0.25 Zr alloys were studied.The microstructure and the mechanical properties were significantly affected by annealing regimes after casting for both alloys.The research demonstrated a possibility to form high-density distributed quasicrystalline-structured I-phase precipitates with a mean size of 29 nm during low-temperature annealing of as-cast alloys.Fine manganese-bearing precipitates of Ⅰ-phase increased recrystallization resistance and significantly enhanced the mechanical strength of the alloys studied.The estimated strengthening effect owing to Ⅰ-phase precipitation was 150 MPa.Due to the formation of L12-structured Al3Zr dispersoids with a mean size of 5.7 nm,additional alloying with Zr increased yield strength by about 90 MPa.The L12-phase strengthening effect was estimated through the dislocation bypass looping and shearing mechanisms.
Keywords:Aluminum alloy  Quasicrystals  Dispersoid hardening  Recrystallization  Mechanical properties
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号