首页 | 本学科首页   官方微博 | 高级检索  
     

土壤有机质近红外光谱分析的波段优选
引用本文:王瑛瑛,宋良图. 土壤有机质近红外光谱分析的波段优选[J]. 仪表技术, 2014, 0(5): 4-6,14
作者姓名:王瑛瑛  宋良图
作者单位:[1]中国科学技术大学自动化系,安徽合肥230026 [2]中国科学院合肥智能机械研究所,安徽合肥230031
摘    要:利用Savitzky-Golay(SG)卷积平滑方法和标准正态变量变换(SNV)对土壤光谱数据进行处理后,通过对波段的优选建立了主成分回归(PCR)模型。结果表明,预测样本的相关系数可达到0.932 2,预测标准差(RMSEP)为0.041 1%。

关 键 词:土壤有机质  近红外光谱  波段优选  主成分回归

Waveband Optimization of Near Infrared Analysis of Soil Organic Matter
WANG Ying-ying,SONG Liang-tu. Waveband Optimization of Near Infrared Analysis of Soil Organic Matter[J]. Instrumentation Technology, 2014, 0(5): 4-6,14
Authors:WANG Ying-ying  SONG Liang-tu
Affiliation:1. Department of Automation, University of Science and Technology of China, Hefei 230026, China; 2.Institute of Intelligent Machines, Chinese Academy of Science, Hefei 230031, China)
Abstract:The pretreatment methods of Savitzky-Golay and Standard Normal Variate Transformation( SNV) are used to deal with the soil spectrum. In order to set up a better prediction model,waveband optimization is necessary. This paper presents a new way to make the waveband optimization. Meantime,the prediction model is built using the Principal Component Regression( PCR). The result shows that the correlation coefficient can reach 0. 932 2 and the standard error of prediction is 0. 041 1%.
Keywords:soil organic matter  near infrared spectroscopy  waveband optimization  PCR
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号