首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进BP神经网络的手写字符识别
引用本文:许宜申,顾济华,陶智,吴迪,朱明诚. 基于改进BP神经网络的手写字符识别[J]. 通信技术, 2011, 44(5): 106-109,118
作者姓名:许宜申  顾济华  陶智  吴迪  朱明诚
作者单位:苏州大学物理科学与技术学院,江苏,苏州,215006
基金项目:苏州大学科研预研基金资助项目(NO.Q3108805)
摘    要:针对标准反向传播(BP,Back Propagation)神经网络算法收敛速度慢、易陷入局部极小等缺点,采用附加动量法与学习速率自适应调整相结合策略对神经网络初始参数进行设置。通过在权重计算公式中加入动量项,降低神经网络对误差曲面局部调节的敏感性,有效抑制其陷于局部极小。学习速率根据总误差的变化进行自适应调整,可以有效地缩短学习时间,加快收敛速度。将该改进算法应用于数字、英文字母以及简单汉字的手写字符识别系统中,进行了有无动量、有无噪声等实验,结果表明该方法与传统BP算法相比识别精度较高、训练时间较短且具有较强的鲁棒性。

关 键 词:模式识别  BP神经网络  算法改进  手写字符识别  附加动量  自适应学习速率

Handwritten Character Recognition based on Improved BP Neural Network
XU Yi-shen,GU Ji-hua,TAO Zhi,WU Di,ZHU Ming-cheng. Handwritten Character Recognition based on Improved BP Neural Network[J]. Communications Technology, 2011, 44(5): 106-109,118
Authors:XU Yi-shen  GU Ji-hua  TAO Zhi  WU Di  ZHU Ming-cheng
Affiliation:XU Yi-shen,GU Ji-hua,TAO Zhi,WU Di,ZHU Ming-cheng(Department of Physics Science and Technology,Soochow University,Suzhou Jiangsu 215006,China)
Abstract:A modified back propagation(BP) algorithm with additional momentum and self-adaptive learning rate is adopted to set up the initial parameters of the neural network,which could overcome the disadvantages of standard BP algorithm,such as slow convergence rate and easy fall into local minimum.The network sensibility to the local adjustment of error curved surface could be reduced and the local minimum suppressed efficiently by adding momentum item into the weight calculation formula,a self-adaptive learning a...
Keywords:pattern recognition  BP neural network  improved algorithm  handwritten character recognition  additional momentum  self-adaptive learning rate  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号