首页 | 本学科首页   官方微博 | 高级检索  
     

面向图表示社区检测的新型聚类覆盖算法
引用本文:陈洁,李锐,赵姝,张燕平. 面向图表示社区检测的新型聚类覆盖算法[J]. 电子学报, 2000, 48(9): 1680-1687. DOI: 10.3969/j.issn.0372-2112.2020.09.003
作者姓名:陈洁  李锐  赵姝  张燕平
作者单位:1. 计算智能与信号处理教育部重点实验室, 安徽合肥 230601;2. 安徽大学计算机科学与技术学院, 安徽合肥 230601
摘    要:图表示社区检测使用图表示方法学习网络节点的向量表示,然后对节点向量进行聚类获得社团结构.然而经典的聚类算法在聚类节点向量时,得到的结果往往不能够体现社区的特性.提出一种新型的聚类覆盖算法,将聚类所得覆盖视为社区划分结果.首先在节点向量空间中计算得到每个簇的覆盖中心;然后根据覆盖中心到同类样本的平均距离作为覆盖半径,在向量空间中形成覆盖;最后对未覆盖的点做二次划分得到社区结构.在多个有真实和无真实标签网络的实验表明,所提出的算法可以得到更合理的社区结果.

关 键 词:社区发现  图表示  聚类  覆盖算法  
收稿时间:2019-09-25

A New Clustering Cover Algorithm Based on Graph Representation for Community Detection
CHEN Jie,LI Rui,ZHAO Shu,ZHANG Yan-ping. A New Clustering Cover Algorithm Based on Graph Representation for Community Detection[J]. Acta Electronica Sinica, 2000, 48(9): 1680-1687. DOI: 10.3969/j.issn.0372-2112.2020.09.003
Authors:CHEN Jie  LI Rui  ZHAO Shu  ZHANG Yan-ping
Affiliation:1. Key Laboratory of Intelligent Computing and Signal Processing, Ministry of Education, Anhui University, Hefei, Anhui 230601, China;2. School of Computer Science and Technology, Anhui University, Hefei, Anhui 230601, China
Abstract:Community detection based on graph representation learn nodes' vector representation,and then communities are obtained by clustering algorithm.However,when classical clustering algorithms often fail to reflect the characteristics of communities.Cluster cover algorithm (CCL) is proposed.CCL clusters nodes' vector into covers.A cover is viewed as a community.Firstly,the cover center of each cluster is calculated in the node vector space.Then,according to the average distance among the cover center and the same class samples as the cover radius,a cover is formed in the vector space.Finally,the nodes outside the covers are grouped into suitable cover to obtain community structure.Experiments with real and non-real tag networks show that the algorithm can get more reasonable community results.
Keywords:community detection  graph represents  clustering  cover algorithm  
点击此处可从《电子学报》浏览原始摘要信息
点击此处可从《电子学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号