首页 | 本学科首页   官方微博 | 高级检索  
     


HIGH TEMPERATURE SHORT FATIGUE CRACK BEHAVIOUR IN A STAINLESS STEEL
Authors:S Ganesh Sundara  Raman  D Argence  A Pineau
Affiliation:Centre des Matériaux, B.P. 87, 91003 Evry Cedex, France, URA/CNRS 866;Fortech, No. 75, Boulevard de la Liberation, B.P. 173,09102 Parmers, France
Abstract:Abstract— Continuous low cycle fatigue (LCF) tests with-and without-hold time in push-pull and torsion loading modes and sequential LCF tests in push-pull mode were carried out at 650°C in air on thin tubular specimens of 316 stainless steel; the sequential tests involving pure fatigue (PF) and creep-fatigue (CF) loadings. The growth of short fatigue cracks was studied by taking several replicas from the specimen surface which were subsequently observed under a scanning electron microscope. An analysis was done with respect to both crack density and the orientation of microcracks and macrocrack(s) which led to failure.
Crack density was higher on the surface of a CF tested specimen than that of a PF tested specimen. Mainly short cracks oriented at 45° to the specimen axis were observed on a torsion fatigue tested specimen surface. For push-pull specimens the microcracks propagated perpendicular to the specimen axis to form macrocracks that propagated in the same direction. On the other hand, for torsion specimens the microcracks which initially propagated at 45° to the specimen axis linked to form macrocracks oriented parallel and perpendicular to the specimen axis. However, the macrocrack responsible for the final fracture was always oriented parallel to the specimen axis.
Cumulative damage was dependent on the type of loading (PF or CF) in the first part of sequential tests. In particular microcracks initiated during an initial damage phase observed under sequential LCF tests in PF were found to be healed by oxide formation during the hold times applied in the subsequent CF loading and this produced a total damage summation significantly larger than one.
Keywords:Short fatigue cracks  Plastic replicas  Sequential tests  Cumulative damage  Oxide crack healing
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号