首页 | 本学科首页   官方微博 | 高级检索  
     


Some results on addition/subtraction chains
Authors:Hugo Volger
Affiliation:Mathematical Institute, University of Tübingen, Auf der Morgenstelle 10, 7400 Tübingen 1, Fed. Rep. Germany
Abstract:Let ?(n) (respectively ?(n)) be the length of the shortest addition chain respectively addition/subtraction chain for n. We shall present several results on ?(n). In particular, we determine ?(n) for all n satisfying s(n) ? 3 and show ?log n? + 2 ? ?(n) for all n satisfying s(n) ? 3, where s(n) is the extended sum of digits of n. These results are based on analogous results for ?(n) and on the following two inequalities: |n| ? 2d?1Ff+3 < 2k?b and f + b ? log s(n) for a chain of length k = d + f + b with d doublings, f short steps, and b back steps for n. Moreover, we show that the difference ?(n)??(n) (respectively ?(n)??log n?) can be made arbbitrarily large. In addition, we prove that ?(m) ? ? (?m) ? ? (m) + 1 for m > 0 and characterize the case ?(?m) = ?(m). Finally, we determine ?k(n1,…,nk), the k-dimensional generalization of ?, with the help of ?(n1,…,nk), the k-element generalization of ?.
Keywords:Addition/subtraction chains
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号