首页 | 本学科首页   官方微博 | 高级检索  
     


A scalable infrastructure model for carbon capture and storage: SimCCS
Authors:Richard S. Middleton  Jeffrey M. Bielicki
Affiliation:1. Center for Transportation Analysis, Oak Ridge National Laboratory, MS 6054, PO Box 2008, Oak Ridge, TN 37831, USA;2. Belfer Center for Science and International Affairs, Harvard Kennedy School, 79 John F. Kennedy Street, Cambridge, MA 02138, USA
Abstract:In the carbon capture and storage (CCS) process, CO2 sources and geologic reservoirs may be widely spatially dispersed and need to be connected through a dedicated CO2 pipeline network. We introduce a scalable infrastructure model for CCS (simCCS) that generates a fully integrated, cost-minimizing CCS system. SimCCS determines where and how much CO2 to capture and store, and where to build and connect pipelines of different sizes, in order to minimize the combined annualized costs of sequestering a given amount of CO2. SimCCS is able to aggregate CO2 flows between sources and reservoirs into trunk pipelines that take advantage of economies of scale. Pipeline construction costs take into account factors including topography and social impacts. SimCCS can be used to calculate the scale of CCS deployment (local, regional, national). SimCCS’ deployment of a realistic, capacitated pipeline network is a major advancement for planning CCS infrastructure. We demonstrate simCCS using a set of 37 CO2 sources and 14 reservoirs for California. The results highlight the importance of systematic planning for CCS infrastructure by examining the sensitivity of CCS infrastructure, as optimized by simCCS, to varying CO2 targets. We finish by identifying critical future research areas for CCS infrastructure.
Keywords:Carbon capture and storage   Optimization   Pipeline network
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号