首页 | 本学科首页   官方微博 | 高级检索  
     

基于视觉Transformer的双流目标跟踪算法
作者姓名:江英杰  宋晓宁
作者单位:江南大学 人工智能与计算机学院,江苏 无锡 214122
摘    要:目前基于Transformer的目标跟踪算法主要利用Transformer来融合深度卷积特征,忽略了Transformer在特征提取和解码预测方面的能力。针对上述问题,提出一种基于视觉Transformer的双流目标跟踪算法。引入基于注意力机制的Swin Transformer进行特征提取,通过移位窗口进行全局信息建模。使用Transformer编码器对目标特征和搜索区域特征进行充分融合,使用解码器学习目标查询中的位置信息。分别对编解码器中的双流信息进行目标预测。在决策层面上进一步地加权融合得到最终跟踪结果,并使用多监督策略。该算法在LaSOT、TrackingNet、UAV123和NFS四个具有挑战性的大规模跟踪数据集上取得了先进的结果,分别达到67.4%、80.9%、68.6%和66.0%的成功率曲线下面积,展示了其强大的潜力。此外,由于避免了复杂的后处理步骤,能够端到端进行目标跟踪,跟踪速度可达42?FPS。

关 键 词:目标跟踪  深度学习  孪生网络  Transformer  注意力机制  
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号